
VHDL Looping
Prof. James L. Frankel

Harvard University

Version of 7:46 PM 4-Dec-2021
Copyright © 2021, 2017 James L. Frankel. All rights reserved.

Infinite Loop Statement

• Repeat statements forever
loop_label :

loop
statement

end loop loop_label ;

<contents> means zero or more repetitions of <contents>
<contents> means that <contents> is optional

• Use an exit statement to terminate the loop

• It is very unusual to use this infinite loop statement

2

Exit Statement

• Use to terminate the innermost loop, possibly conditionally
exit when condition ;

<contents> means that <contents> is optional

• Use to terminate a labelled loop, possibly conditionally
exit loop_label when condition ;

<contents> means that <contents> is optional

• If the infinite loop statement is used, an exit statement is almost always
used to terminate the loop

3

Loop Statement Using while

• Repeat statements zero or more times

loop_label :
while condition loop

statement
end loop loop_label ;

<contents> means zero or more repetitions of <contents>

<contents> means that <contents> is optional

4

Loop Statement Using for

• Repeat statements zero or more times

loop_label :
for loop_parameter in range loop

statement
end loop loop_label ;

<contents> means zero or more repetitions of <contents>

<contents> means that <contents> is optional

• See the architecture behavioral_loop of comparator4BitStdSeveralConfig
in example comparator4bitstdseveralconfig.vhd on the class web site

5

Generate Statement Using for

• Iterative replication of concurrent statements

generate_label :
for generate_parameter in range generate

declarations
begin

concurrent_statement
end generate generate_label ;

<contents> means zero or more repetitions of <contents>

<contents> means that <contents> is optional

6

Generate Statement Using if

• Conditional instantiation of concurrent statements
generate_label :
if condition generate

declarations
begin

concurrent_statement
end generate generate_label ;

<contents> means zero or more repetitions of <contents>
<contents> means that <contents> is optional

• Use the generate statement using if when there is an exceptional case to
the generate statement using for

7

Example of Generate Statement Using for

• See the second to the last example in comparator4bitstdseveral.vhd
architecture structural_generate of comparator4BitStdSeveral is

attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
attribute chip_pin of equal: signal is "H15";
signal x: std_logic_vector(0 to 3);

begin
generate_xnors: for i in 0 to 3 generate

u0to3: xnor02 port map (
a => a(i),
b => b(i),
q => x(i));

end generate generate_xnors;
u4: and04 port map (

a => x(0),
b => x(1),
c => x(2),
d => x(3),
q => equal);

end architecture structural_generate;

8

Another Example of Generate Statement
Using for
• See the last example in comparator4bitstdseveral.vhd
architecture structural_generate_alt of comparator4BitStdSeveral is
attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
attribute chip_pin of equal: signal is "H15";
signal x: std_logic_vector(0 to 3);

begin
generate_xnors: for index in 0 to 3 generate
u0: xnor02 port map (
a => a(index),
b => b(index),
q => x(index));

end generate generate_xnors;

and_results: process(x)
variable equalVar: std_logic;

begin
equalVar := '1’;
for index in 0 to 3 loop
equalVar := equalVar and x(index);

end loop;
equal <= equalVar;

end process and_results;
end architecture structural_generate_alt;

9

Using Generic in the Declaration of an Entity

entity register is

generic (width: integer);

port (clk, en, clr: in std_ulogic;

d: in std_ulogic_vector(width-1 downto 0);

q: out std_ulogic_vector(width-1 downto 0));

end entity register;

• The generic clause must precede the port clause

• Within the architecture for the entity, the generic can be used as a constant

• Allows a parameterized entity to be designed

10

Instantiating a Generic Entity

• Precede the port map with a generic map clause, as shown here:

u0: regStdUlogicWithSyncClearGeneric
generic map (width => 8)
port map (

clk => clock_50,
en => enableReg,
clear => resetReg,
d => sw17 & sw16 & sw15 & sw14 & sw13 & sw12 & sw11 & sw10,
q(7) => ledr17,
q(6) => ledr16,
q(5) => ledr15,
q(4) => ledr14,
q(3) => ledr13,
q(2) => ledr12,
q(1) => ledr11,
q(0) => ledr10);

11

